Identification of Mycobacterium tuberculosis Antigens of High Serodiagnostic Value

Author:

Ireton Gregory C.12,Greenwald Rena12,Liang Hong12,Esfandiari Javan12,Lyashchenko Konstantin P.12,Reed Steven G.12

Affiliation:

1. Infectious Disease Research Institute, 1124 Columbia St., Suite 400, Seattle, Washington 98104

2. Chembio Diagnostic Systems, Inc., 3661 Horseblock Road, Medford, New York 11763

Abstract

ABSTRACT Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis , with several million new cases detected each year. Current methods of diagnosis are time-consuming and/or expensive or have a low level of accuracy. Therefore, new diagnostics are urgently needed to address the global tuberculosis burden and to improve control programs. Serological assays remain attractive for use in resource-limited settings because they are simple, rapid, and inexpensive and offer the possibility of detecting cases often missed by routine sputum smear microscopy. The aim of this study was to identify M. tuberculosis seroreactive antigens from a panel of 103 recombinant proteins selected as diagnostic candidates. Initial library screening by protein array analysis and enzyme-linked immunosorbent assay (ELISA) identified 42 antigens with serodiagnostic potential. Among these, 25 were novel proteins. The reactive antigens demonstrated various individual sensitivities, ranging from 12% to 78% (specificities, 76 to 100%). When the antigens were analyzed in combinations, up to 93% of antibody responders could be identified among the TB patients. Selected seroreactive proteins were used to design 3 new polyepitope fusion proteins. Characterization of these antigens by multiantigen print immunoassay (MAPIA) revealed that the vast majority of the TB patients (90%) produced antibody responses. The results confirmed that due to the remarkable variation in immune recognition patterns, an optimal multiantigen cocktail should be designed to cover the heterogeneity of antibody responses and thus achieve the highest possible test sensitivity.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3