Direct Interaction between the N- and C-Terminal Portions of the Herpes Simplex Virus Type 1 Origin Binding Protein UL9 Implies the Formation of a Head-to-Tail Dimer

Author:

Chattopadhyay Soma1,Weller Sandra K.1

Affiliation:

1. Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030

Abstract

ABSTRACT UL9, a superfamily II helicase, is a multifunctional protein required for herpes simplex virus type 1 replication in vivo. Although the C-terminal 317-amino-acid DNA binding domain of UL9 exists as a monomer, the full-length protein behaves as a dimer in solution. Thus, it has been assumed that the N-terminal 534 residues contain a region necessary for efficient dimerization and that UL9 dimers are in a head-to-head configuration. We recently showed, however, that residues in the N terminus could modulate the inhibitory properties of UL9 by decreasing the DNA binding ability of the C terminus (S. Chattopadhyay and S. K. Weller, J. Virol. 80:4491-4500, 2006). We suggested that a direct interaction between the N- and C-terminal portions of UL9 might exist and serve to modulate the DNA binding activities of the C terminus. In this study, we used a coimmunoprecipitation assay to show that the N-terminal portion of UL9 can indeed directly interact with the C terminus. A series of truncation mutant proteins were used to show that a region in the N terminus between residues 293 and 321 is necessary for efficient interaction. Similarly, a region in the C terminus between residues 600 and 800 is required for this interaction. The simplest model to explain these data is that UL9 dimers are oriented in a head-to-tail arrangement in which the N terminus is in contact with the C terminus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3