Localization of the Bacillus subtilis murB Gene within the dcw Cluster Is Important for Growth and Sporulation

Author:

Real Gonçalo1,Henriques Adriano O.1

Affiliation:

1. Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras Codex, Portugal

Abstract

ABSTRACT The Bacillus subtilis murB gene, encoding UDP- N -acetylenolpyruvoylglucosamine reductase, a key enzyme in the peptidoglycan (PG) biosynthetic pathway, is embedded in the dcw (for “division and cell wall”) cluster immediately upstream of divIB . Previous attempts to inactivate murB were unsuccessful, suggesting its essentiality. Here we show that the cell morphology, growth rate, and resistance to cell wall-active antibiotics of murB conditional mutants is a function of the expression level of murB . In one mutant, in which murB was insertionally inactivated in a merodiploid bearing a second xylose-inducible P xylA-murB allele, DivIB levels were reduced and a normal growth rate was achieved only if MurB levels were threefold that of the wild-type strain. However, expression of an extra copy of divIB restored normal growth at wild-type levels of MurB. In contrast, DivIB levels were normal in a second mutant containing an in-frame deletion of murBmurB ) in the presence of the P xylA-murB gene. Furthermore, this strain grew normally with wild-type levels of MurB. During sporulation, the levels of MurB were highest at the time of synthesis of the spore cortex PG. Interestingly, the Δ murB P xylA-murB mutant did not sporulate efficiently even at high concentrations of inducer. Since high levels of inducer did not interfere with sporulation of a murB + P xylA-murB strain, it appears that ectopic expression of murB fails to support efficient sporulation. These data suggest that coordinate expression of divIB and murB is important for growth and sporulation. The genetic context of the murB gene within the dcw cluster is unique to the Bacillus group and, taken together with our data, suggests that in these species it contributes to the optimal expression of cell division and PG biosynthetic functions during both vegetative growth and spore development.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3