Chromosomal Integration Mechanism of Infecting Mu Virion DNA

Author:

Au T. K.1,Agrawal Pushpa1,Harshey Rasika M.1

Affiliation:

1. Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712

Abstract

ABSTRACT DNA transposition is central to the propagation of temperate phage Mu. A long-standing problem in Mu biology has been the mechanism by which the linear genome of an infecting phage, which is linked at both ends to DNA acquired from a previous host, integrates into the new host chromosome. If Mu were to use its well-established cointegrate mechanism for integration (single-strand nicks at Mu ends, joined to a staggered double-strand break in the target), the flanking host sequences would remain linked to Mu; target-primed replication of the linear integrant would subsequently break the chromosome. The absence of evidence for chromosome breaks has led to speculation that infecting Mu might use a cut-and-paste mechanism, whereby Mu DNA is cut away from the flanking sequences prior to integration. In this study we have followed the fate of the flanking DNA during the time course of Mu infection. We have found that these sequences are still attached to Mu upon integration and that they disappear soon after. The data rule out a cut-and-paste mechanism and suggest that infecting Mu integrates to generate simple insertions by a variation of its established cointegrate mechanism in which, instead of a “nick, join, and replicate” pathway, it follows a “nick, join, and process” pathway. The results show similarities with human immunodeficiency virus integration and provide a unifying mechanism for development of Mu along either the lysogenic or lytic pathway.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3