Requirements for Assembly of PtlH with the Pertussis Toxin Transporter Apparatus of Bordetella pertussis

Author:

Verma Anita1,Burns Drusilla L.1

Affiliation:

1. Laboratory of Respiratory and Special Pathogens, Food and Drug Administration, Bethesda, Maryland 20892

Abstract

ABSTRACT PtlH is an essential component of the Ptl system, the type IV transporter responsible for secretion of pertussis toxin (PT) across the outer membrane of Bordetella pertussis . The nine Ptl proteins are believed to interact to form a membrane-spanning apparatus through which the toxin is secreted. In this study, we monitored the subcellular localization of PtlH in strains of B. pertussis lacking PT, lacking other Ptl proteins, or from which ATP has been depleted in order to gain insight into the requirements for assembly of PtlH with the remainder of the Ptl transporter complex that is thought to be tightly embedded in the membrane. We found that PtlH is exclusively localized to the inner membrane fraction of the cell in a wild-type strain of B. pertussis . In contrast, PtlH localized to both the cytoplasmic and inner membrane fractions of a mutant strain of B. pertussis that does not produce PT. In comparison to how it localized in wild-type strains of B. pertussis , PtlH exhibited aberrant localization in strains lacking PtlD, PtlE, PtlF, and PtlG. We also found that localization of PtlH was perturbed in B. pertussis strains that were treated with carbonyl cyanide m -chlorophenylhydrazone and sodium arsenate, which are capable of depleting cellular ATP levels, and in strains of B. pertussis that produce an altered form of PtlH that lacks ATPase activity. When taken together, these results indicate that tight association of PtlH with the membrane, likely through interactions with components of the transporter-PT complex, requires the toxin substrate, a specific subset of the Ptl proteins, and ATP. Based on these data, a model for the assembly of the Ptl transporter-PT complex is presented.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genome-wide association study of Klebsiella pneumoniae identifies variations linked to carbapenems resistance;Frontiers in Microbiology;2022-11-01

2. The WxxxE proteins in microbial pathogenesis;Critical Reviews in Microbiology;2022-03-14

3. Biotechnological applications of type 1 secretion systems;Biotechnology Advances;2021-12

4. TheRickettsiatype IV secretion system: unrealized complexity mired by gene family expansion;Pathogens and Disease;2016-06-14

5. Bordetella protein toxins;The Comprehensive Sourcebook of Bacterial Protein Toxins;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3