Affiliation:
1. Microbiology I, University of Duisburg-Essen, 45141 Essen, Germany
2. Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
3. Institut für Allgemeine Mikrobiologie, Christian Albrechts Universität Kiel, 24118 Kiel, Germany
Abstract
ABSTRACT
In spite of the significant impact of biomethylation on the mobility and toxicity of metals and metalloids in the environment, little is known about the biological formation of these methylated metal(loid) compounds. While element-specific methyltransferases have been isolated for arsenic, the striking versatility of methanoarchaea to methylate numerous metal(loid)s, including rare elements like bismuth, is still not understood. Here, we demonstrate that the same metal(loid)s (arsenic, selenium, antimony, tellurium, and bismuth) that are methylated by
Methanosarcina mazei in vivo
are also methylated by
in vitro
assays with purified recombinant MtaA, a methyltransferase catalyzing the methyl transfer from methylcobalamin [CH
3
Cob(III)] to 2-mercaptoethanesulfonic acid (CoM) in methylotrophic methanogenesis. Detailed studies revealed that cob(I)alamin [Cob(I)], formed by MtaA-catalyzed demethylation of CH
3
Cob(III), is the causative agent for the multimetal(loid) methylation observed. Moreover, Cob(I) is also capable of metal(loid) hydride generation. Global transcriptome profiling of
M. mazei
cultures exposed to bismuth did not reveal induced methyltransferase systems but upregulated regeneration of methanogenic cofactors in the presence of bismuth. Thus, we conclude that the multimetal(loid) methylation
in vivo
is attributed to side reactions of CH
3
Cob(III) with reduced cofactors formed in methanogenesis. The close connection between metal(loid) methylation and methanogenesis explains the general capability of methanoarchaea to methylate metal(loid)s.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献