Molecular and Immunological Significance of Chimpanzee Major Histocompatibility Complex Haplotypes for Hepatitis C Virus Immune Response and Vaccination Studies

Author:

Mizukoshi Eishiro1,Nascimbeni Michelina1,Blaustein Joshua B.1,Mihalik Kathleen2,Rice Charles M.3,Liang T. Jake1,Feinstone Stephen M.2,Rehermann Barbara1

Affiliation:

1. Liver Diseases Section, NIDDK, National Institutes of Health

2. Laboratory of Hepatitis Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892

3. Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10021

Abstract

ABSTRACT The chimpanzee is a critical animal model for studying cellular immune responses to infectious pathogens such as hepatitis B and C viruses, human immunodeficiency virus, and malaria. Several candidate vaccines and immunotherapies for these infections aim at the induction or enhancement of cellular immune responses against viral epitopes presented by common human major histocompatibility complex (MHC) alleles. To identify and characterize chimpanzee MHC class I molecules that are functionally related to human alleles, we sequenced 18 different Pan troglodytes (Patr) alleles of 14 chimpanzees, 2 of them previously unknown and 3 with only partially reported sequences. Comparative analysis of Patr binding pockets and binding assays with biotinylated peptides demonstrated a molecular homology between the binding grooves of individual Patr alleles and the common human alleles HLA-A1, -A2, -A3, and -B7. Using cytotoxic T cells isolated from the blood of hepatitis C virus (HCV)-infected chimpanzees, we then mapped the Patr restriction of these HCV peptides and demonstrated functional homology between the Patr-HLA orthologues in cytotoxicity and gamma interferon (IFN-γ) release assays. Based on these results, 21 HCV epitopes were selected to characterize the chimpanzees' cellular immune response to HCV. In each case, IFN-γ-producing T cells were detectable in the blood after but not prior to HCV infection and were specifically targeted against those HCV peptides predicted by Patr-HLA homology. This study demonstrates a close functional homology between individual Patr and HLA alleles and shows that HCV infection generates HCV peptides that are recognized by both chimpanzees and humans with Patr and HLA orthologues. These results are relevant for the design and evaluation of vaccines in chimpanzees that can now be selected according to the most frequent human MHC haplotypes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference54 articles.

1. Adams, E. J., S. Cooper, and P. Parham. 2001. A novel, nonclassical MHC class I molecule specific to the common chimpanzee. J. Immunol. 167 : 3858-3869.

2. Atherton E. and R. C. Sheppard. 1989. Solid phase peptide synthesis. Oxford IRL Press Oxford United Kingdom.

3. Balla-Jhagjhoorsingh, S. S., G. Koopman, P. Mooij, T. G. Haaksma, V. J. Teeuwsen, R. E. Bontrop, and J. L. Heeney. 1999. Conserved CTL epitopes shared between HIV-infected human long-term survivors and chimpanzees. J. Immunol. 162 : 2308-2314.

4. Battegay, M., J. Fikes, A. M. Di Bisceglie, P. A. Wentworth, A. Sette, E. Celis, W.-M. Ching, A. Grakoui, C. M. Rice, K. Kurokohchi, J. A. Berzofsky, J. H. Hoofnagle, S. M. Feinstone, and T. Akatsuka. 1995. Patients with chronic hepatitis C have circulating cytotoxic T cells which recognize hepatitis C virus-encoded peptides binding to HLA-A2.1 molecules. J. Virol. 69 : 2462-2470.

5. Bertoni, R., A. Sette, J. Sidney, L. G. Guidotti, M. Shapiro, R. Purcell, and F. V. Chisari. 1998. Human class I supertypes and CTL repertoires extend to chimpanzees. J. Immunol. 161 : 4447-4455.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3