Adding Genes to the RNA Genome of Vesicular Stomatitis Virus: Positional Effects on Stability of Expression

Author:

Wertz Gail W.1,Moudy Robin1,Ball L. Andrew1

Affiliation:

1. Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama 35294

Abstract

ABSTRACT Gene expression of the nonsegmented negative strand (NNS) RNA viruses is controlled primarily at the level of transcription by the position of the genes relative to the single transcriptional promoter. We tested this principle by generating engineered variants of vesicular stomatitis virus in which an additional, identical, transcriptional unit was added to the genome at each of the viral gene junctions. Analysis of transcripts confirmed that the level of transcription was determined by the position of the gene relative to the promoter. However, the position at which a gene was inserted affected the replication potential of the viruses. Adding a gene between the first two genes, N and P, reduced replication by over an order of magnitude, whereas addition of a gene at the other gene junctions had no effect on replication levels. All genes downstream of the inserted gene had decreased levels of expression, since transcription of the extra gene introduced an additional transcriptional attenuation event. The added gene was stably maintained in the genome upon repeated passage in all cases. However, expression of the added gene was stable at only three of the four positions. In the case of insertion between the N and P genes, a virus population arose within two passages that had restored replication to wild-type levels. In this population, expression of the additional gene as a monocistronic mRNA was suppressed by mutations at the end of the upstream (N) gene that abolished transcriptional termination. Because transcription is obligatorily sequential, this prevented transcription of the inserted downstream gene as a monocistronic mRNA and resulted instead in polymerase reading through the gene junction to produce a bicistronic mRNA. This eliminated the additional attenuation step and restored expression of all downstream genes and viral replication to wild-type levels. These data show that transcriptional termination is a key element in control of gene expression of the negative strand RNA viruses and a means by which expression of individual genes may be regulated within the framework of a single transcriptional promoter. Further, these results are directly relevant to the use of NNS viruses as vectors and vaccine delivery agents, as they show that the level of expression of an added gene can be controlled by its insertion position but that not all positions of insertion yield stable expression of the added gene.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3