Affiliation:
1. Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama 35294
Abstract
ABSTRACT
Gene expression of the nonsegmented negative strand (NNS) RNA viruses is controlled primarily at the level of transcription by the position of the genes relative to the single transcriptional promoter. We tested this principle by generating engineered variants of vesicular stomatitis virus in which an additional, identical, transcriptional unit was added to the genome at each of the viral gene junctions. Analysis of transcripts confirmed that the level of transcription was determined by the position of the gene relative to the promoter. However, the position at which a gene was inserted affected the replication potential of the viruses. Adding a gene between the first two genes, N and P, reduced replication by over an order of magnitude, whereas addition of a gene at the other gene junctions had no effect on replication levels. All genes downstream of the inserted gene had decreased levels of expression, since transcription of the extra gene introduced an additional transcriptional attenuation event. The added gene was stably maintained in the genome upon repeated passage in all cases. However, expression of the added gene was stable at only three of the four positions. In the case of insertion between the N and P genes, a virus population arose within two passages that had restored replication to wild-type levels. In this population, expression of the additional gene as a monocistronic mRNA was suppressed by mutations at the end of the upstream (N) gene that abolished transcriptional termination. Because transcription is obligatorily sequential, this prevented transcription of the inserted downstream gene as a monocistronic mRNA and resulted instead in polymerase reading through the gene junction to produce a bicistronic mRNA. This eliminated the additional attenuation step and restored expression of all downstream genes and viral replication to wild-type levels. These data show that transcriptional termination is a key element in control of gene expression of the negative strand RNA viruses and a means by which expression of individual genes may be regulated within the framework of a single transcriptional promoter. Further, these results are directly relevant to the use of NNS viruses as vectors and vaccine delivery agents, as they show that the level of expression of an added gene can be controlled by its insertion position but that not all positions of insertion yield stable expression of the added gene.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献