A Mutation in the 16S rRNA Decoding Region Attenuates the Virulence of Mycobacterium tuberculosis

Author:

Watanabe Shinya1,Matsumura Kazunori1,Iwai Hiroki1,Funatogawa Keiji2,Haishima Yuji3,Fukui Chie3,Okumura Kayo4,Kato-Miyazawa Masako1,Hashimoto Masahito5,Teramoto Kanae6,Kirikae Fumiko1,Miyoshi-Akiyama Tohru7,Kirikae Teruo1

Affiliation:

1. Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan

2. Tochigi Prefectural Institute of Public Health and Environmental Science, Tochigi, Japan

3. National Institute of Health Sciences, Tokyo, Japan

4. Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan

5. Kagoshima University, Kagoshima, Japan

6. JEOL Ltd., Tokyo, Japan

7. Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan

Abstract

ABSTRACT Mycobacterium tuberculosis contains a single rRNA operon that encodes targets for antituberculosis agents, including kanamycin. To date, only four mutations in the kanamycin binding sites of 16S rRNA have been reported in kanamycin-resistant clinical isolates. We hypothesized that another mutation(s) in the region may dramatically decrease M. tuberculosis viability and virulence. Here, we describe an rRNA mutation, U1406A, which was generated in vitro and confers resistance to kanamycin while highly attenuating M. tuberculosis virulence. The mutant showed decreased expression of 20% ( n = 361) of mycobacterial proteins, including central metabolic enzymes, mycolic acid biosynthesis enzymes, and virulence factors such as antigen 85 complexes and ESAT-6. The mutation also induced three proteins, including KsgA (Rv1010; 16S rRNA adenine dimethyltransferase), which closely bind to the U1406A mutation site on the ribosome; these proteins were associated with ribosome maturation and translation initiation processes. The mutant showed an increase in 17S rRNA (precursor 16S rRNA) and a decrease in the ratio of 30S subunits to the 70S ribosomes, suggesting that the U1406A mutation in 16S rRNA attenuated M. tuberculosis virulence by affecting these processes.

Funder

Grants for International Health Research

JSPS KAKENHI

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3