Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: recent developments

Author:

Suman Simpal Kumar1,Chandrasekaran Natarajan2ORCID,Priya Doss C. George3ORCID

Affiliation:

1. School of Bio Sciences & Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu, India

2. Centre for Nano Biotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India

3. Laboratory for Integrative Genomics, Department of Integrative Biology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Abstract

SUMMARY Tuberculosis (TB) is a major global health problem and the second most prevalent infectious killer after COVID-19. It is caused by Mycobacterium tuberculosis ( Mtb ) and has become increasingly challenging to treat due to drug resistance. The World Health Organization declared TB a global health emergency in 1993. Drug resistance in TB is driven by mutations in the bacterial genome that can be influenced by prolonged drug exposure and poor patient adherence. The development of drug-resistant forms of TB, such as multidrug resistant, extensively drug resistant, and totally drug resistant, poses significant therapeutic challenges. Researchers are exploring new drugs and novel drug delivery systems, such as nanotechnology-based therapies, to combat drug resistance. Nanodrug delivery offers targeted and precise drug delivery, improves treatment efficacy, and reduces adverse effects. Along with nanoscale drug delivery, a new generation of antibiotics with potent therapeutic efficacy, drug repurposing, and new treatment regimens (combinations) that can tackle the problem of drug resistance in a shorter duration could be promising therapies in clinical settings. However, the clinical translation of nanomedicines faces challenges such as safety, large-scale production, regulatory frameworks, and intellectual property issues. In this review, we present the current status, most recent findings, challenges, and limiting barriers to the use of emulsions and nanoparticles against drug-resistant TB.

Funder

Indian Council of Medical Research

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3