Gene-Specific Inhibition of Reovirus Replication by RNA Interference

Author:

Kobayashi Takeshi12,Chappell James D.132,Danthi Pranav12,Dermody Terence S.142

Affiliation:

1. Departments of Pediatrics

2. Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

3. Pathology

4. Microbiology and Immunology

Abstract

ABSTRACT Mammalian reoviruses contain a genome of 10 segments of double-stranded RNA (dsRNA). Reovirus replication and assembly occur within distinct structures called viral inclusions, which form in the cytoplasm of infected cells. Viral nonstructural proteins μNS and σNS and core protein μ2 play key roles in forming viral inclusions and recruiting other viral proteins and RNA to these structures for replication and assembly. However, the precise functions of these proteins in viral replication are poorly defined. Therefore, to better understand the functions of reovirus proteins associated with formation of viral inclusions, we used plasmid-based vectors to establish 293T cell lines stably expressing small interfering RNAs (siRNAs) specific for transcripts encoding the μ2, μNS, and σNS proteins of strain type 3 Dearing (T3D). Infectivity assays revealed that yields of T3D, but not those of strain type 1 Lang, were significantly decreased in 293T cells stably expressing μ2, μNS, or σNS siRNA. Stable expression of siRNAs specific for any one of these proteins substantially diminished viral dsRNA, protein synthesis, and inclusion formation, indicating that each is a critical component of the viral replication machinery. Using cell lines stably expressing μNS siRNA, we developed a complementation system to rescue viral replication by transient transfection with recombinant T3D μNS in which silent mutations were introduced into the sequence targeted by the μNS siRNA. Furthermore, we demonstrated that μNSC, which lacks the first 40 amino residues of μNS, is incapable of restoring reovirus growth in the complementation system. These results reveal interdependent functions for viral inclusion proteins and indicate that cell lines stably expressing reovirus siRNAs are useful tools for the study of viral protein structure-function relationships.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluorescent protein tags affect the condensation properties of a phase-separating viral protein;Molecular Biology of the Cell;2024-07-01

2. Reovirus μ2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components;Nucleic Acids Research;2022-04-30

3. Antiviral Potency of Small Interfering RNA Molecules;Nanotechnology for Infectious Diseases;2022

4. RNAi: VIRAL THERAPEUTICS;INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH;2022-01-01

5. Activation of Innate Immunity by Therapeutic Nucleic Acids;International Journal of Molecular Sciences;2021-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3