Cinematographic observations of growth cycles of Chlamydia trachomatis in primary cultures of human amniotic cells

Author:

Neeper I D1,Patton D L1,Kuo C C1

Affiliation:

1. Department of Obstetrics/Gynecology, University of Washington, Seattle 98195.

Abstract

Time-lapse cinematography was used to study the growth cycle of Chlamydia trachomatis in primary cell cultures of human amnion. Twelve preterm and twelve term placentas were obtained within 8 h of delivery, and epithelial cells were dissociated from the amniotic membranes by trypsinization and grown in Rose chambers. The epithelial nature of the cultured cells was documented by morphology and by immunofluorescence staining for cytoskeletal proteins, which matched the staining of intact amnion. With regular feedings, uninfected cultures remained healthy for up to 30 days. Confluent cultures (7 to 10 days) were infected with a genital strain (E/UW-5/CX) of C. trachomatis at 10(5) infectious units per chamber. Infections were done in culture medium without cycloheximide, which is often used to induce susceptibility of the cells. Between 66 and 90% of the cells were infected. Intracytoplasmic inclusions were visible by 18 h post infection (p.i.) and grew larger as the organisms inside multiplied. By 72 h p.i., the inclusions occupied the entire cytoplasm of the host cells. Further growth of the inclusions overdistended and ruptured the host cells on days 3 to 7. Cells not infected by the original inoculum became infected on day 5 or 6 p.i. by the chlamydial particles released from the ruptured cells. No amniotic cell was ever observed to survive the infection. The data presented support the hypothesis that amniotic epithelium is susceptible to infection and damage by C. trachomatis. This culture system provided detailed and dynamic observations of chlamydial infection under conditions more nearly physiologic than previously reported.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extrusions are phagocytosed and promoteChlamydiasurvival within macrophages;Cellular Microbiology;2016-11-21

2. Cellular Exit Strategies of Intracellular Bacteria;Virulence Mechanisms of Bacterial Pathogens;2016-04-09

3. Cellular Exit Strategies of Intracellular Bacteria;Microbiology Spectrum;2015-12-18

4. Chlamydia trachomatisInclusion Disrupts Host Cell Cytokinesis to Enhance Its Growth in Multinuclear Cells;Journal of Cellular Biochemistry;2015-11-19

5. Chlamydia;Bergey's Manual of Systematics of Archaea and Bacteria;2015-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3