Cooperative Cleavage of the R Peptide in the Env Trimer of Moloney Murine Leukemia Virus Facilitates Its Maturation for Fusion Competence

Author:

Löving Robin1,Kronqvist Malin1,Sjöberg Mathilda1,Garoff Henrik1

Affiliation:

1. Department of Biosciences and Nutrition, Karolinska Institute, S-141 57 Huddinge, Sweden

Abstract

ABSTRACT The spike protein of murine leukemia virus, MLV, is made as a trimer of the Env precursor. This is primed for receptor-induced activation of its membrane fusion function first by cellular furin cleavage in the ectodomain and then by viral protease cleavage in the endodomain. The first cleavage separates the peripheral surface (SU) subunit from the transmembrane (TM) subunit, and the latter releases a 16-residue-long peptide (R) from the TM endodomain. Here, we have studied the distribution of R peptide cleavages in the spike TM subunits of Moloney MLV preparations with partially R-peptide-processed spikes. The spikes were solubilized as trimers and separated with an R peptide antibody. This showed that the spikes were either uncleaved or cleaved in all of its TM subunits. Further studies showed that R peptide cleavage-inhibited Env mutants, L 649 V and L 649 I, were rescued by wild-type (wt) Env in heterotrimeric spikes. These findings suggested that the R peptide cleavages in the spike are facilitated through positive allosteric cooperativity; i.e., the cleavage of the TM subunit in one Env promoted the cleavages of the TMs in the other Envs. The mechanism ensures that protease cleavage in newly released virus will generate R-peptide-cleaved homotrimers rather than heterotrimeric intermediates. However, using a cleavage site Env mutant, L 649 R, which was not rescued by wt Env, it was possible to produce virus with heterotrimers. These were shown to be less fusion active than the R-peptide-cleaved homotrimers. Therefore, the cooperative cleavage will speed up the maturation of released virus for fusion competence.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3