Antigenicity, function, and conformation of synthetic oligopeptides corresponding to amino-terminal sequences of wild-type and mutant matrix proteins of vesicular stomatitis virus

Author:

Shipley J B1,Pal R1,Wagner R R1

Affiliation:

1. Department of Microbiology and Cancer Center, University of Virginia, Charlottesville 22908.

Abstract

The matrix (M) protein of vesicular stomatitis virus (VSV) has a major antigenic determinant (epitope 1) that maps to a region extending from amino acids 19 through 43 and transcription-inhibition activity that maps to the first 43 N-terminal amino acids (J.R. Ogden, R. Pal, and R. R. Wagner, J. Virol. 58:860-868, 1986). The M protein of temperature-sensitive mutant tsO23(III) is devoid of epitope 1 and transcription-inhibition activity and substitutes glutamic acid for glycine at amino acid 21 as well as having amino acid substitutions at positions 111 and 227 (K. Morita, R. Vanderoef, and J. Lenard, J. Virol. 61:256-263, 1987). We undertook to map more precisely epitope 1 and the transcription-inhibition region of VSV M protein by means of synthetic oligopeptides generated by an automated solid-phase protein synthesizer. A pentadecapeptide designated PI(wt, Gly21), corresponding to amino acids 17 to 31 of wild-type (wt) M protein, strongly bound monoclonal antibody MAb2 (directed to epitope 1); however, an analogous pentadecapeptide with glutamic acid substituted for glycine at position 21, designated PII(tsO23, Glu21), completely failed to recognize MAb2. Polyclonal antibody raised in rabbits immunized with PI(wt, Gly21) reacted strongly with wt M protein, the homologous pentadecapeptide, and, to a lesser extent, PII(tsO23, Glu21). Anti-PII(tsO23, Glu21) failed to recognize PI(wt, Gly21) or wt M protein. Anti-PI(wt, Gly21) competed efficiently for binding of MAb2 to wt M protein and was as effective as MAb2 in reversing inhibition of VSV transcription by wt M protein. Neither PI(wt, Gly21) nor PII(tsO23, Glu21) exhibited any ability to inhibit VSV transcription. However, a lysine-rich oligopeptide, PII(Met1-Leu20), corresponding to the first 20 N-terminal amino acids of wt M protein, and polylysine itself did inhibit VSV transcription, albeit much less efficiently than native wt M protein. Monospecific polyclonal antibody directed to the 20-mer oligopeptide PIII(Met1-Leu20) reversed transcription inhibition by M protein in a dose-dependent manner almost identical to that of anti-PI(wt, Gly21) and epitope 1-specific MAb2. Examination by circular dichroism spectropolarimetry revealed significant differences in the conformation of the two pentadecapeptides attributable to the Gly in equilibrium Glu amino acid substitution at position 21.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference26 articles.

1. Structural effects of amino acid substitutions on the P21 proteins: evidence for a malignant conformation;Brandt-Rauf P. W.;J. Protein Chem.,1985

2. Structural effects of amino acid substitutions on the matrix protein of vesicular stomatitis virus;Brandt-Rauf P. W.;J. Protein Chem.,1987

3. Role of the membrane (M) protein in endogenous inhibition of in vitro transcription by vesicular stomatitis virus;Carroll A. R.;J. Virol.,1979

4. Serological relationships between different strains of vesicular stomatitis virus;Cartwright B.;J. Gen. Virol.,1972

5. Order conformation of polypeptides and proteins in acidic dodecylsulfate solution;Chuen-Shang C.;Biochemistry,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3