Inhibitory Humoral Responses to the Plasmodium falciparum Vaccine Candidate EBA-175 Are Independent of the Erythrocyte Invasion Pathway

Author:

Badiane Aida S.12,Bei Amy K.3,Ahouidi Ambroise D.12,Patel Saurabh D.34,Salinas Nichole5,Ndiaye Daouda12,Sarr Ousmane12,Ndir Omar12,Tolia Niraj H.5,Mboup Souleymane12,Duraisingh Manoj T.3

Affiliation:

1. Laboratory of Bacteriology and Virology, Le Dantec Hospital, Dakar, Senegal

2. Laboratory of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal

3. Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA

4. Boston Children's Hospital, Department of GI/Nutrition, Boston, Massachusetts, USA

5. Departments of Molecular Microbiology and Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA

Abstract

ABSTRACT Plasmodium falciparum utilizes multiple ligand-receptor interactions for invasion. The invasion ligand EBA-175 is being developed as a major blood-stage vaccine candidate. EBA-175 mediates parasite invasion of host erythrocytes in a sialic acid-dependent manner through its binding to the erythrocyte receptor glycophorin A. In this study, we addressed the ability of naturally acquired human antibodies against the EBA-175 RII erythrocyte-binding domain to inhibit parasite invasion of ex vivo isolates, in relationship to the sialic acid dependence of these parasites. We have determined the presence of antibodies to the EBA-175 RII domain by enzyme-linked immunosorbent assay (ELISA) in individuals from areas of Senegal where malaria is endemic with high and low transmission. Using affinity-purified human antibodies to the EBA-175 RII domain from pooled patient plasma, we have measured the invasion pathway as well as the invasion inhibition of clinical isolates from Senegalese patients in ex vivo assays. Our results suggest that naturally acquired anti-EBA-175 RII antibodies significantly inhibit invasion of Senegalese parasites and that these responses can be significantly enhanced through limiting other ligand-receptor interactions. However, the extent of this functional inhibition by EBA-175 antibodies is not associated with the sialic acid dependence of the parasite strain, suggesting that erythrocyte invasion pathway usage by parasite strains is not driven by antibodies targeting the EBA-175/glycophorin A interaction. This work has implications for vaccine design based on the RII domain of EBA-175 in the context of alternative invasion pathways.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3