The nonconserved hinge region and distinct amino-terminal domains of the ROR alpha orphan nuclear receptor isoforms are required for proper DNA bending and ROR alpha-DNA interactions.

Author:

McBroom L D,Flock G,Giguère V

Abstract

ROR alpha 1 and ROR alpha 2 are two isoforms of a novel member of the steroid-thyroid-retinoid receptor superfamily and are considered orphan receptors since their cognate ligand has yet to be identified. These putative receptors have previously been shown to bind as monomers to a DNA recognition sequence composed of two distinct moieties, a 3' nuclear receptor core half-site AGGTCA preceded by a 5' AT-rich sequence. Recognition of this bipartite hormone response element (RORE) requires both the zinc-binding motifs and a group of amino acid residues located at the carboxy-terminal end of the DNA-binding domain (DBD) which is referred to here as the carboxy-terminal extension. In this report, we show that binding of ROR alpha 1 and ROR alpha 2 to the RORE induces a large DNA bend of approximately 130 degrees which may be important for receptor function. The overall direction of the DNA bend is towards the major groove at the center of the 3' AGGTCA half-site. The presence of the nonconserved hinge region which is located between the DBD and the putative ligand-binding domain (LBD) or ROR alpha is required for maximal DNA bending. Deletion of a large portion of the amino-terminal domain (NTD) of the ROR alpha protein does not alter the DNA bend angle but shifts the DNA bend center 5' relative to the bend induced by intact ROR alpha. Methylation interference studies using the NTD-deleted ROR alpha 1 mutant indicate that some DNA contacts in the 5' AT-rich half of the RORE are also shifted 5', while those in the 3' AGGTCA half-site are unaffected. These results are consistent with a model in which the ROR alpha NTD and the nonconserved hinge region orient the zinc-binding motifs and the carboxy-terminal extension of the ROR alpha DBD relative to each other to achieve proper interactions with the two halves of its recognition site. Transactivation studies suggest that both protein-induced DNA bending and protein-protein interactions are important for receptor function.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3