Author:
Kato Akihisa,Arii Jun,Koyanagi Yoshio,Kawaguchi Yasushi
Abstract
ABSTRACTA mutation in herpes simplex virus 1 dUTPase (vdUTPase), which precluded its phosphorylation at Ser-187, decreased viral neurovirulence and increased mutation frequency in progeny virus genomes in the brains of mice where endogenous cellular dUTPase activity was relatively low, and overexpression of cellular dUTPase restored viral neurovirulence and mutation frequency altered by the mutation. Thus, phosphorylation of vdUTPase appeared to regulate viral virulence and genome integrity by compensating for low cellular dUTPase activityin vivo.IMPORTANCEMany DNA viruses encode a homolog of host cell dUTPases, which are known to function in accurate replication of cellular DNA genomes. The viral dUTPase activity has long been assumed to play a role in viral replication by preventing mutations in progeny virus genomes if cellular dUTPase activity was not sufficient. Here, we showed that a mutation in herpes simplex virus 1 dUTPase, which precluded its phosphorylation at Ser-187 and reduced its activity, decreased viral neurovirulence and increased mutation frequency in progeny virus genomes in the brains of mice where endogenous cellular dUTPase activity was relatively low. In contrast, overexpression of cellular dUTPase restored viral neurovirulence and mutation frequency altered by the mutation in the brains of mice. This is the first report, to our knowledge, directly showing that viral dUTPase activity regulates viral genome integrity and pathogenicity by compensating for insufficient cellular dUTPase activityin vivo.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献