Evolution of Cocirculating Varicella-Zoster Virus Genotypes during a Chickenpox Outbreak in Guinea-Bissau

Author:

Depledge Daniel P.1,Gray Eleanor R.1,Kundu Samit1,Cooray Samantha1,Poulsen Anja23,Aaby Peter24,Breuer Judith1

Affiliation:

1. Division of Infection and Immunity, University College London, London, United Kingdom

2. Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau

3. Child and Adolescent Clinic, Rigshospitalet, Copenhagen, Denmark

4. Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark

Abstract

ABSTRACT Varicella-zoster virus (VZV), a double-stranded DNA alphaherpesvirus, is associated with seasonal outbreaks of varicella in nonimmunized populations. Little is known about whether these outbreaks are associated with a single or multiple viral genotypes and whether new mutations rapidly accumulate during transmission. Here, we take advantage of a well-characterized population cohort in Guinea-Bissau and produce a unique set of 23 full-length genome sequences, collected over 7 months from eight households. Comparative sequence analysis reveals that four distinct genotypes cocirculated among the population, three of which were present during the first week of the outbreak, although no patients were coinfected, which indicates that exposure to infectious virus from multiple sources is common during VZV outbreaks. Transmission of VZV was associated with length polymorphisms in the R1 repeat region and the origin of DNA replication. In two cases, these were associated with the formation of distinct lineages and point to the possible coevolution of these loci, despite the lack of any known functional link in VZV or related herpesviruses. We show that these and all other sequenced clade 5 viruses possess a distinct R1 repeat motif that increases the acidity of an ORF11p protein domain and postulate that this has either arisen or been lost following divergence of the major clades. Thus, sequencing of whole VZV genomes collected during an outbreak has provided novel insights into VZV biology, transmission patterns, and (recent) natural history. IMPORTANCE VZV is a highly infectious virus and the causative agent of chickenpox and shingles, the latter being particularly associated with the risk of painful complications. Seasonal outbreaks of chickenpox are very common among young children, yet little is known about the dynamics of the virus during person-to-person to transmission or whether multiple distinct viruses seed and/or cocirculate during an outbreak. In this study, we have sequenced chickenpox viruses from an outbreak in Guinea-Bissau that are supported by detailed epidemiological data. Our data show that multiple different virus strains seeded and were maintained throughout the 6-month outbreak period and that viruses transmitted between individuals accumulated new mutations in specific genomic regions. Of particular interest is the potential coevolution of two distinct parts of the genomes and our calculations of the rate of viral mutation, both of which increase our understanding of how VZV evolves over short periods of time in human populations.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3