Glycoprotein 3 of Porcine Reproductive and Respiratory Syndrome Virus Exhibits an Unusual Hairpin-Like Membrane Topology

Author:

Zhang Minze1,Krabben Ludwig1,Wang Fangkun12,Veit Michael1

Affiliation:

1. Institut für Virologie, Freie Universität Berlin, Berlin, Germany

2. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, China

Abstract

ABSTRACT Glycoprotein 3 (GP3) of the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) consists of a cleaved signal peptide, a highly glycosylated domain, a short hydrophobic region, and an unglycosylated C-terminal domain. GP3 is supposed to form a complex with GP2 and GP4 in virus particles, but secretion of GP3 from cells has also been reported. We analyzed the membrane topology of GP3 from various PRRSV strains. A fraction of the protein is secreted from transfected cells, GP3 from PRRSV-1 strains to a greater extent than GP3 from PRRSV-2 strains. This secretion behavior is reversed after exchange of the variable C-terminal domain. A fluorescence protease protection assay shows that the C terminus of GP3, fused to green fluorescent protein (GFP), is resistant to proteolytic digestion in permeabilized cells. Furthermore, glycosylation sites inserted into the C-terminal part of GP3 are used. Both experiments indicate that the C terminus of GP3 is translocated into the lumen of the endoplasmic reticulum. Deletion of the conserved hydrophobic region greatly enhances secretion of GP3, and fusion of this domain to GFP promotes membrane anchorage. Bioinformatics suggests that the hydrophobic region forms an amphipathic helix. Accordingly, exchanging only a few amino acids in its hydrophilic face prevents secretion of GP3 and in its hydrophobic face enhances it. Exchanging the latter amino acids in the context of the viral genome did not affect release of virions, but released particles were not infectious. In sum, GP3 exhibits an unusual hairpin-like membrane topology that might explain why a fraction of the protein is secreted. IMPORTANCE PRRSV is the most important pathogen in the pork industry. It causes persistent infections that lead to reduced weight gain of piglets; highly pathogenic strains even kill 90% of an infected pig population. PRRSV cannot be eliminated from pig farms by vaccination due to the large amino acid variability between the existing strains, especially in the glycoproteins. Here, we analyzed basic structural features of GP3 from various PRRSV strains. We show that the protein exhibits an unusual hairpin-like membrane topology; membrane anchoring might occur via an amphipathic helix. This rather weak membrane anchor explains why a fraction of the protein is secreted from cells. Interestingly, PRRSV-1 strains secrete more GP3 than PRRSV-2. We speculate that secreted GP3 plays a role during PRRSV infection of pigs: it might serve as a decoy to distract antibodies away from virus particles.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3