Prototype Foamy Virus Gag Nuclear Localization: a Novel Pathway among Retroviruses

Author:

Müllers Erik12,Stirnnagel Kristin12,Kaulfuss Sylvia12,Lindemann Dirk12

Affiliation:

1. Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden

2. CRTD/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Biotechnology Center, Dresden, Germany

Abstract

ABSTRACT Gag nuclear localization has long been recognized as a hallmark of foamy virus (FV) infection. Two required motifs, a chromatin-binding site (CBS) and a nuclear localization signal (NLS), both located in glycine-arginine-rich box II (GRII), have been described. However, the underlying mechanisms of Gag nuclear translocation are largely unknown. We analyzed prototype FV (PFV) Gag nuclear localization using a novel live-cell fluorescence microscopy assay. Furthermore, we characterized the nuclear localization route of Gag mutants tagged with the simian vacuolating virus 40-NLS (SV40-NLS) and also dissected the respective contributions of the CBS and the NLS. We found that PFV Gag does not translocate to the nucleus of interphase cells by NLS-mediated nuclear import and does not possess a functional NLS. PFV Gag nuclear localization occurred only by tethering to chromatin during mitosis. This mechanism was found for endogenously expressed Gag as well as for Gag delivered by infecting viral particles. Thereby, the CBS was absolutely essential, while the NLS was dispensable. Gag CBS-dependent nuclear localization was neither essential for infectivity nor necessary for Pol encapsidation. Interestingly, Gag localization was independent of the presence of Pol, Env, and viral RNA. The addition of a heterologous SV40-NLS resulted in the nuclear import of PFV Gag in interphase cells, rescued the nuclear localization deficiency but not the infectivity defect of a PFV Gag ΔGRII mutant, and did not enhance FV's ability to infect G 1 /S-phase-arrested cells. Thus, PFV Gag nuclear localization follows a novel pathway among orthoretroviral Gag proteins.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3