Sequence and expression of chicken and mouse rsk: homologs of Xenopus laevis ribosomal S6 kinase.

Author:

Alcorta D A,Crews C M,Sweet L J,Bankston L,Jones S W,Erikson R L

Abstract

We have previously reported the isolation of cDNAs encoding two closely related Xenopus ribosomal S6 kinases, S6KII alpha and -beta (S. W. Jones, E. Erikson, J. Blenis, J. L. Maller, and R. L. Erikson, Proc. Natl. Acad. Sci. USA 85:3377-3381, 1988). We report here the molecular cloning of one chicken and two mouse homologs of the Xenopus laevis cDNAs. As described for the Xenopus proteins, these cDNAs were found to predict polypeptides that contain two distinct kinase domains, of which one is most closely related to the catalytic subunit of cyclic AMP-dependent protein kinase and the other is most closely related to the catalytic subunit of phosphorylase b kinase. The three predicted proteins were more than 79% identical to the Xenopus S6KII alpha protein. The chicken and one of the mouse cDNAs were, respectively, 3.7 and 3.1 kilobase pairs in length, predicted proteins of 752 and 724 amino acids with molecular weights of 84.4 and 81.6 kilodaltons, and hybridized to mRNAs in fibroblasts and tissues of approximately 3.6 and 3.4 kilobases (kb). The second mouse cDNA was approximately 6.1 kilobase pairs and was not full length but predicted the C-terminal 633 amino acids of a protein that is similar to the C-terminal portion of Xenopus S6KII alpha. This clone hybridized to mRNA transcripts of 7.6 and 3.4 kb. In vitro transcription and translation of the chicken and the mouse cDNAs that predict complete proteins produced major products with apparent molecular weights of 96 and 84 kilodaltons. Analysis of mRNA levels in chicken tissues showed significant quantities of the 3.6-kb transcript in small and large intestine, spleen, and bursa. Both mouse cDNA were similarly expressed at significant levels in intestine, thymus, and lung; however, the 7.6-kb mRNA was differentially and more highly expressed in heart and brain. The two mouse cDNAs represent two different S6 kinase genes, as shown by comparison of their protein sequences, mRNA transcript sizes, genomic organizations, and nucleic acid sequences. We propose that this family of genes be named rsk, for ribosomal S6 kinase.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3