Operon Prediction for Sequenced Bacterial Genomes without Experimental Information

Author:

Bergman Nicholas H.12,Passalacqua Karla D.2,Hanna Philip C.2,Qin Zhaohui S.3

Affiliation:

1. Bioinformatics Program

2. Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109

3. Center for Statistical Genetics and Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109

Abstract

ABSTRACT Various computational approaches have been proposed for operon prediction, but most algorithms rely on experimental or functional data that are only available for a small subset of sequenced genomes. In this study, we explored the possibility of using phylogenetic information to aid in operon prediction, and we constructed a Bayesian hidden Markov model that incorporates comparative genomic data with traditional predictors, such as intergenic distances. The prediction algorithm performs as well as the best previously reported method, with several significant advantages. It uses fewer data sources and so it is easier to implement, and the method is more broadly applicable than previous methods—it can be applied to essentially every gene in any sequenced bacterial genome. Furthermore, we show that near-optimal performance is easily reached with a generic set of comparative genomes and does not depend on a specific relationship between the subject genome and the comparative set. We applied the algorithm to the Bacillus anthracis genome and found that it successfully predicted all previously verified B. anthracis operons. To further test its performance, we chose a predicted operon (BA1489-92) containing several genes with little apparent functional relatedness and tested their cotranscriptional nature. Experimental evidence shows that these genes are cotranscribed, and the data have interesting implications for B. anthracis biology. Overall, our findings show that this algorithm is capable of highly sensitive and accurate operon prediction in a wide range of bacterial genomes and that these predictions can lead to the rapid discovery of new functional relationships among genes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3