Correlation between renal membrane binding and nephrotoxicity of aminoglycosides

Author:

Williams P D,Bennett D B,Gleason C R,Hottendorf G H

Abstract

The kinetics of aminoglycoside binding to renal brush border and basolateral membrane vesicles from rat renal cortex were studied by using [3H]amikacin. [3H]amikacin binding to renal membranes was found to be a rapid, saturable process with a fourfold greater affinity for basolateral membranes than for brush border membranes (Kd basolateral = 607 microM; Kd brush border = 2,535 microM). Renal membranes prepared from immature rats (2 to 3 weeks old) exhibited a significantly lower affinity compared with membranes from adults (Kd basolateral = 2,262 microM; Kd brush border = 6,216 microM). Additionally, the inhibitory behavior of several aminoglycosides versus [3H]amikacin binding to brush border membranes revealed the following rank order of potency: neomycin greater than tobramycin approximately gentamicin approximately netilmicin greater than amikacin approximately neamine greater than streptomycin. The relative insensitivity of immature rats to aminoglycoside-induced nephrotoxicity in vivo and the comparative nephrotoxicity of the various aminoglycosides suggest that renal membrane-binding affinity is closely correlated to the nephrotoxic potential of these antibiotics.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference44 articles.

1. Maturation of renal tubular transport of gentamicin;Aladjem M.;Dev. Pharmacol. Ther.,1984

2. Fine structure of a human mammary carcinoma cell line;Arnold J.;Vitro (Rockville),1975

3. Membrane perturbation by aminoglycosides as a simple screen of their toxicity;Au S.;Antimicrob. Agents Chemother.,1986

4. Aminoglycoside nephrotoxicity;Bennett W. M.;Nephron,1983

5. Sex-related differences in the susceptibility of rats to gentamicin nephrotoxicity;Bennett W. M.;J. Infect. Dis.,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3