Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa

Author:

Yahr T L1,Barbieri J T1,Frank D W1

Affiliation:

1. Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226, USA.

Abstract

Exoenzyme S is an ADP-ribosylating extracellular protein of Pseudomonas aeruginosa that is produced as two immunologically related forms, a 49-kDa enzymatically active form and a 53-kDa inactive form. The postulated relationship between the two proteins involves a carboxy-terminal proteolytic cleavage of the 53-kDa precursor to produce an enzymatically active 49-kDa protein. To determine the genetic relationship between the two forms of exoenzyme S, exoS (encoding the 49-kDa form) was used as a probe in Southern blot analyses of P. aeruginosa chromosomal digests. Cross-hybridizing bands were detected in chromosomal digests of a strain of P. aeruginosa in which exoS had been deleted by allelic exchange. A chromosomal bank was prepared from the exoS deletion strain, 388deltaexoS::TC, and screened with a probe internal to exoS. Thirteen clones that cross-hybridized with the exoS probe were identified. One representative clone contained the open reading frame exoT; this open reading frame encoded a protein of 457 amino acids which showed 75% amino acid identity to ExoS. The exoT open reading frame, cloned into a T7 expression system, produced a 53-kDa protein in Escherichia coli, termed Exo53, which reacted to antisera against exoenzyme S. A histidine-tagged derivative of recombinant Exo53 possessed approximately 0.2% of the ADP-ribosyltransferase activity of recombinant ExoS. Inactivation of exoT in an allelic-replacement strain resulted in an Exo53-deficient phenotype without modifying the expression of ExoS. These studies prove that the 53- and 49-kDa forms of exoenzyme S are encoded by separate genes. In addition, this is the first report of the factor-activating-exoenzyme-S-dependent ADP-ribosyltransferase activity of the 53-kDa form of exoenzyme S.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference39 articles.

1. Control of transcription termination. Annu;Adhya S.;Rev. Biochem.,1978

2. .Barbieri J. T. Unpublished data.

3. Production of exoenzyme S during Pseudomonas aeruginosa infections of burned mice;Bjorn M. J.;Infect. Immun.,1979

4. Pseudomonas aeruginosa exoenzyme S;Coburn J.;Curr. Top. Microbiol. Immunol.,1992

5. Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity;Coburn J.;J. Biol. Chem.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3