Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion

Author:

Horton H M1,Burand J P1

Affiliation:

1. Department of Microbiology, University of Massachusetts, Amherst 01003.

Abstract

This research provides the first evidence for specific receptor binding of polyhedron-derived baculovirus (PDV) to host cells and to lepidopteran brush border membrane vesicles (BBMV) and demonstration of entry via a nonendocytotic pathway involving direct membrane fusion. The technique of fluorescence-activated cell sorting analysis was used to investigate the specificity of binding between the PDV phenotype of Lymantria dispar nuclear polyhedrosis virus (LdNPV) and host membranes. Fluorescein isothiocyanate-labeled PDV was found to bind in a saturable manner to the gypsy moth cell line IPLB-LdEIta and to L. dispar BBMV. The IPLB-LdEIta cell line was found to possess approximately 10(6) PDV-specific receptor sites per cell. Excess levels of unlabeled PDV were highly efficient in competing with fluorescein isothiocyanate-labeled PDV for limited receptor sites, further supporting the specificity of the interaction. Major reductions in virus binding (as high as 70%) after protease treatment of cells indicated that a protein receptor is involved. A fluorescence dequenching assay of membrane fusion with octadecyl rhodamine B (R18)-labeled PDV was used to identify PDV fusion to host cells and BBMV. Direct membrane fusion of PDV occurred at 27 degrees C to both target membranes as well as at 4 degrees C at approximately 55% of the levels achieved at 27 degrees C. Viral fusion to BBMV occurred throughout the pH range of 4 to 11, with dramatically increased fusion levels (threefold) under the alkaline conditions normal for lepidopteran larval midguts. Treatment of cells with chloroquine, a lysosomotropic agent, did not significantly affect PDV fusion to cells or infectivity in tissue culture assays.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3