Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates

Author:

Martinez R1,Sarisky R T1,Weber P C1,Weller S K1

Affiliation:

1. Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.

Abstract

Mutations in the alkaline nuclease gene of herpes simplex type 1 (HSV-1) (nuc mutations) induce almost wild-type levels of viral DNA; however, mutant viral yields are 0.1 to 1% of wild-type yields (L. Shao, L. Rapp, and S. Weller, Virology 195:146-162, 1993; R. Martinez, L. Shao, J.C. Bronstein, P.C. Weber, and S. Weller, Virology 215:152-164, 1996). nuc mutants are defective in one or more stages of genome maturation and appear to package DNA into aberrant or defective capsids which fail to egress from the nucleus of infected cells. In this study, we used pulsed-field gel electrophoresis to test the hypothesis that the defects in nuc mutants are due to the failure of the newly replicated viral DNA to be processed properly during DNA replication and/or recombination. Replicative intermediates of HSV-1 DNA from both wild-type- and mutant-infected cells remain in the wells of pulsed-field gels, while free linear monomers are readily resolved. Digestion of this well DNA with restriction enzymes that cleave once in the viral genome releases discrete monomer DNA from wild-type virus-infected cells but not from nuc mutant-infected cells. We conclude that both wild-type and mutant DNAs exist in a complex, nonlinear form (possibly branched) during replication. The fact that discrete monomer-length DNA cannot be released from nuc DNA by a single-cutting enzyme suggests that this DNA is more branched than DNA which accumulates in cells infected with wild-type virus. The well DNA from cells infected with wild-type and nuc mutants contains XbaI fragments which result from genomic inversions, indicating that alkaline nuclease is not required for mediating recombination events within HSV DNA. Furthermore, nuc mutants are able to carry out DNA replication-mediated homologous recombination events between inverted repeats on plasmids as evaluated by using a quantitative transient recombination assay. Well DNA from both wild-type- and mutant-infected cells contains free U(L) termini but not free U(S) termini. Various models to explain the structure of replicating DNA are considered.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3