Primary Human Colonic Myofibroblasts Are Resistant to Clostridium difficile Toxin A-Induced, but Not Toxin B-Induced, Cell Death

Author:

Mullan N.1,Hughes K. R.1,Mahida Y. R.1

Affiliation:

1. Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, United Kingdom

Abstract

ABSTRACT Colonic inflammation in Clostridium difficile infection is mediated by released toxins A and B. We investigated responses to C. difficile toxins A and B by isolated primary human colonic myofibroblasts, which represent a distinct subpopulation of mucosal cells that are normally located below the intestinal epithelium. Following incubation with either purified toxin A or B, there was a change in myofibroblast morphology to stellate cells with processes that were immunoreactive for alpha-smooth muscle actin. Most of the myofibroblasts remained viable, with persistence of stellate morphology, despite exposure to high concentrations (up to 10 μg/ml) of toxin A for 72 h. In contrast, a majority of the toxin B-exposed myofibroblasts lost their processes prior to cell death over 24 to 72 h. At low concentrations, toxin A provided protection against toxin B-induced cell death. Within 4 h, myofibroblasts exposed to either toxin A or toxin B lost expression of the nonglucosylated form of Rac1, and there was also a loss of the active form of RhoA. Despite preexposure to high concentrations of toxin A for 3 h, colonic myofibroblasts were able to recover their morphology and proliferative capacity during prolonged culture in medium. However, toxin B-preexposed myofibroblasts were not able to recover. In conclusion, primary human colonic mucosal myofibroblasts are resistant to toxin A (but not toxin B)-induced cell death. Responses by colonic myofibroblasts may play an important role in mucosal protection, repair, and regeneration in colitis due to C. difficile infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3