Abstract
We have investigated the covalent modification of the proteins encoded by the murine fos proto-oncogene (c-fos) and that of the corresponding gene product of FBJ murine osteosarcoma virus (v-fos). Both proteins are posttranslationally processed in the cell, resulting in forms with lower electrophoretic mobilities than that of the initial translation product on sodium dodecyl sulfate-polyacrylamide gels. Treatment with alkaline phosphatase indicates that most, if not all, of this electrophoretic shift is due to phosphoesterification of both proteins. These phosphoryl groups stoichiometrically modify the v-fos and c-fos proteins on serine residues and turn over rapidly in vivo in the presence of protein kinase inhibitors (half-life, less than 15 min). Direct quantitative comparison of steady-state labeling studies with L-[35S]methionine and [32P]phosphate reveals that the c-fos protein is four- to fivefold more highly phosphorylated than the v-fos protein is. Comparison of tryptic fragments from [32P]phosphate-labeled proteins indicates that although the two proteins have several tryptic phosphopeptides in common, the c-fos protein contains unique major tryptic phosphopeptides that the v-fos protein lacks. These unique sites of c-fos phosphorylation have been tentatively localized to the carboxy-terminal 20 amino acid residues of the protein. Phosphorylation of the c-fos protein, but not the v-fos protein, can be stimulated at least fivefold in vivo by the addition of either 12-tetradecanoyl-phorbol-13-acetate or serum. This increase in the steady-state degree of phosphorylation of c-fos appears to be independent of protein kinase C since phosphorylation is Ca2+ and diacylglycerol independent. The possible role of phosphorylation of these proteins in cellular transformation is discussed.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
201 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献