Structure and function of endogenous feline leukemia virus long terminal repeats and adjoining regions

Author:

Berry B T1,Ghosh A K1,Kumar D V1,Spodick D A1,Roy-Burman P1

Affiliation:

1. Department of Pathology, University of Southern California School of Medicine, Los Angeles 90033.

Abstract

The nucleotide sequence of the 5' long terminal repeat (LTR) of three independent loci (CFE-6, CFE-16, and CF-14) of endogenous feline leukemia virus (FeLV) DNAs of the domestic cat genome was determined. The 3' LTR of the CFE-6 clone was also sequenced. The endogenous FeLV LTRs, which were very similar to each other in sequence and in organization of the functional domains, differed considerably from the exogenous FeLV LTR in the U3 region. The major differences in U3 included variations in sets of small (14 to 19 base pair) direct repeats, altered location of the simian virus 40 core enhancer-like sequence, and occurrence of three segments of largely nonhomologous sequences. There was extensive homology between endogenous and exogenous FeLV LTRs in sequences beginning from the TATA box through the R region down to the 3' end of the U5 region. The DNA sequence downstream of the 5' LTR encompassing the primer-binding site, leader, and almost to the end of the p15gag coding region, a point up to which the sequencing was carried out, also revealed a high degree of conservation. However, the detection of frameshift and nonsense mutations in this region of a nearly full-length endogenous provirus sequence (CFE-6) predicted its defectiveness and correlated with the lack of infectivity of this DNA. The functional studies of the endogenous LTRs, based on linkage to the bacterial cat gene and transient expression in feline cell lines, indicated that although the basic characteristics for promotion and enhancement of transcription were retained in each LTR, there was a significant variation in the activity of the cat constructs. Reconstruction and deletion analyses with the CFE-6 5' LTR revealed the presence of strong transcription regulatory sequences in the 702-base-pair region immediately upstream of the 5' boundary of the endogenous LTR. These and related data suggest that in addition to the transcription-modulating elements occurring within the LTR, the cis-acting nucleotide sequences in the upstream cellular DNA may determine the overall efficiency of transcription of the defective endogenous FeLV provirus loci of the felid genome.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3