Effect of biosynthetic manipulation of heme on insolubility of Vitreoscilla hemoglobin in Escherichia coli

Author:

Hart R A1,Kallio P T1,Bailey J E1

Affiliation:

1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.

Abstract

Vitreoscilla hemoglobin (VHb) is accumulated at high levels in both soluble and insoluble forms when expressed from its native promoter on a pUC19-derived plasmid in Escherichia coli. Examination by atomic absorption spectroscopy and electron paramagnetic resonance spectroscopy revealed that the insoluble form uniformly lacks the heme prosthetic group (apoVHb). The purified soluble form contains heme (holoVHb) and is spectroscopically indistinguishable from holoVHb produced by Vitreoscilla cells. This observation suggested that a relationship may exist between the insolubility of apoVHb and biosynthesis of heme. To examine this possibility, a series of experiments were conducted to chemically and genetically manipulate the formation and conversion of 5-aminolevulinic acid (ALA), a key intermediate in heme biosynthesis. Chemical perturbations involved supplementing the growth medium with the intermediate ALA and the competitive inhibitor levulinic acid which freely cross the cell barrier. Genetic manipulations involved amplifying the gene dosage for the enzymes ALA synthase and ALA dehydratase. Results from both levulinic acid and ALA supplementations indicate that the level of soluble holoVHb correlates with the heme level but that the level of insoluble apoVHb does not. The ratio of soluble to insoluble VHb also does not correlate with the level of total VHb accumulated. The effect of amplifying ALA synthase and ALA dehydratase gene dosage is complex and may involve secondary factors. Results indicate that the rate-limiting step of heme biosynthesis in cells overproducing VHb does not lie at ALA synthesis, as it reportedly does in wild-type E. coli (S. Hino and A. Ishida, Enzyme 16:42-49, 1973).

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3