Affiliation:
1. Section of Microbiology, Cornell University, Ithaca, New York 14853
2. Agricultural Research Service, U.S. Department of Agriculture, Ithaca, New York 14853
Abstract
Acidaminococcus fermentans
utilized citrate or the citrate analog aconitate as an energy source for growth, and these tricarboxylates were used simultaneously. Citrate utilization and uptake showed biphasic kinetics. High-affinity citrate uptake had a
K
t
of 40 μM, but the V
max
was only 25 nmol/mg of protein per min. Low-affinity citrate utilization had a 10-fold higher V
max
, but the
K
s
was greater than 1.0 mM. Aconitate was a competitive inhibitor (
K
i
= 34μM) of high-affinity citrate uptake, but low-affinity aconitate utilization had a 10-fold-lower requirement for sodium than did low-affinity citrate utilization. On the basis of this large difference in sodium requirements, it appeared that
A. fermentans
probably has two systems of tricarboxylate uptake: (i) a citrate/aconitate carrier with a low affinity for sodium and (ii) an aconitate carrier with a high affinity for sodium. Citrate was catabolized by a pathway involving a biotin-requiring, avidin-sensitive, sodium-dependent, membrane-bound oxaloacetate decarboxylase. The cells also had aconitase, but this enzyme was unable to convert citrate to isocitrate. Since cell-free extracts converted either aconitate or glutamate to 2-oxoglutarate, it appeared that aconitate was being catabolized by the glutaconyl-CoA decarboxylase pathway. Exponentially growing cultures on citrate or citrate plus aconitate were inhibited by the sodium/proton antiporter, monensin. Because monensin had no effect on cultures growing with aconitate alone, it appeared that citrate metabolism was acting as an inducer of monensin sensitivity.
A. fermentans
cells always had a low proton motive force (<50 mV), and cells treated with the protonophore TCS (3,3′,4′,5-tetrachlorosalicylanide) grew even though the proton motive force was less than 20 mV. On the basis of these results, it appeared that
A. fermentans
was depending almost exclusively on a sodium motive force for its membrane energetics.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献