Metabolic pathways for activation of the antiviral agent 9-(2-phosphonylmethoxyethyl)adenine in human lymphoid cells

Author:

Robbins B L1,Greenhaw J1,Connelly M C1,Fridland A1

Affiliation:

1. Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

Abstract

9-(2-Phosphonylmethoxyethyl)adenine (PMEA), the acyclic phosphonate analog of adenine monophosphate, is a promising antiviral drug with activity against herpesviruses, Epstein-Barr virus, and retroviruses, including the human immunodeficiency virus. In order to be active, it must be converted to the diphosphate derivative, the putative inhibitor of viral DNA polymerases. The metabolic pathway responsible for activation of PMEA is unclear. The metabolism of PMEA was investigated in human T-lymphoid cells (CEMss) and a PMEA-resistant subline (CEMss(r-1)) with a partial deficiency in adenylate kinase activity. Experiments with [3H]PMEA showed that extracts of CEMss phosphorylated PMEA to its mono- and diphosphate in the presence of ATP as the phosphate donor. No other nucleotides or 5-phosphoribosyl pyrophosphate displayed appreciable activity as a phosphate donor. Subcellular fractionation experiments showed that CEMss cells contained two nucleotide kinase activities, one in mitochondria and one in the cytosol, which phosphorylated PMEA. The PMEA-resistant CEMss mutant proved to have a deficiency in the mitochondrial adenylate kinase activity, indicating that this enzyme was important in the phosphorylation of PMEA. Other effective antiviral purine phosphonate derivatives of PMEA showed a profile of phosphorylating activity similar to that of PMEA. By comparison, phosphorylation of the pyrimidine analog (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine proceeded by an enzyme present in the cytosol. We conclude from these studies that adenylate kinase which has been localized in the intermembrane space of mitochondria is the major route for PMEA phosphorylation in CEMss cells but that another hitherto unidentified enzyme(s) present in the cytosol may contribute to the anabolism of the phosphonates.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3