Using Single-Nucleotide Polymorphisms To Discriminate Disease-Associated from Carried Genomes of Neisseria meningitidis

Author:

Katz Lee S.12,Sharma Nitya V.1,Harcourt Brian H.2,Thomas Jennifer Dolan2,Wang Xin2,Mayer Leonard W.2,Jordan I. King13

Affiliation:

1. School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332

2. Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

3. PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia

Abstract

ABSTRACT Neisseria meningitidis is one of the main agents of bacterial meningitis, causing substantial morbidity and mortality worldwide. However, most of the time N. meningitidis is carried as a commensal not associated with invasive disease. The genomic basis of the difference between disease-associated and carried isolates of N. meningitidis may provide critical insight into mechanisms of virulence, yet it has remained elusive. Here, we have taken a comparative genomics approach to interrogate the difference between disease-associated and carried isolates of N. meningitidis at the level of individual nucleotide variations (i.e., single nucleotide polymorphisms [SNPs]). We aligned complete genome sequences of 8 disease-associated and 4 carried isolates of N. meningitidis to search for SNPs that show mutually exclusive patterns of variation between the two groups. We found 63 SNPs that distinguish the 8 disease-associated genomes from the 4 carried genomes of N. meningitidis , which is far more than can be expected by chance alone given the level of nucleotide variation among the genomes. The putative list of SNPs that discriminate between disease-associated and carriage genomes may be expected to change with increased sampling or changes in the identities of the isolates being compared. Nevertheless, we show that these discriminating SNPs are more likely to reflect phenotypic differences than shared evolutionary history. Discriminating SNPs were mapped to genes, and the functions of the genes were evaluated for possible connections to virulence mechanisms. A number of overrepresented functional categories related to virulence were uncovered among SNP-associated genes, including genes related to the category “symbiosis, encompassing mutualism through parasitism.”

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3