Affiliation:
1. Department of Civil Engineering, McMaster University, Hamilton, Ontario,1 and
2. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5,2 Canada
Abstract
ABSTRACT
Benzene oxidation to carbon dioxide linked to nitrate reduction was observed in enrichment cultures developed from soil and groundwater microcosms. Benzene biodegradation occurred concurrently with nitrate reduction at a constant ratio of 10 mol of nitrate consumed per mol of benzene degraded. Benzene biodegradation linked to nitrate reduction was associated with cell growth; however, the yield, 8.8 g (dry weight) of cells per mol of benzene, was less than 15% of the predicted yield for benzene biodegradation linked to nitrate reduction. In experiments performed with [
14
C]benzene, approximately 92 to 95% of the label was recovered in
14
CO
2
, while the remaining 5 to 8% was incorporated into the nonvolatile fraction (presumably biomass), which is consistent with the low measured yield. In benzene-degrading cultures, nitrite accumulated stoichiometrically as nitrate was reduced and then was slowly reduced to nitrogen gas. When nitrate was depleted and only nitrite remained, the rate of benzene degradation decreased to almost zero. Based on electron balances, benzene biodegradation appears to be coupled more tightly to nitrate reduction to nitrite than to further reduction of nitrite to nitrogen gas.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
155 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献