Poly-3-Hydroxybutyrate in Legionella pneumophila , an Energy Source for Survival in Low-Nutrient Environments

Author:

James Brian W.1,Mauchline W. Stuart1,Dennis P. Julian1,Keevil C. William1,Wait Robin1

Affiliation:

1. Centre for Applied Microbiology and Research, Salisbury, Wiltshire SP4 0JG, United Kingdom

Abstract

ABSTRACT Chloroform-soluble material was extracted from two strains of L. pneumophila serogroup 1 following growth in continuous culture. The purified material was identified as poly-3-hydroxybutyrate (PHB) by nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry. PHB yields of up to 16% of cell dry weight were extracted from culture samples. The PHB was located in electron-dense intracellular inclusions, which fluoresced bright yellow when stained with the lipophilic dye Nile red. A Nile red spectrofluorometric assay provided a more accurate and reliable determination of the PHB content. PHB accumulation increased threefold during iron-limited culture and was inversely related to the concentration of iron metabolized. Chemostat-grown cells survived in a culturable state for at least 600 days when incubated at 24°C in a low-nutrient tap water environment. Nile red spectrofluorometry and flow cytometry demonstrated that PHB reserves were utilized during starvation. PHB utilization, as revealed by the decline in mean cellular fluorescence and cell complexity, correlated with loss of culturability. Fluorescence microscopy provided visual evidence of PHB utilization, with a marked reduction in the number of Nile red-stained granules during starvation. Heat shock treatment failed to resuscitate nonculturable cells. This study demonstrates that L. pneumophila accumulates significant intracellular reserves of PHB, which promote its long-term survival under conditions of starvation.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3