Transmission-reducing and -enhancing monoclonal antibodies against Plasmodium vivax gamete surface protein Pvs48/45

Author:

Bansal Geetha P.1ORCID,Araujo Maisa da Silva2,Cao Yi13,Shaffer Emily1,Araujo Jessica Evangelista24,Medeiros Jansen Fernandes24,Hayashi Clifford3,Vinetz Joseph5ORCID,Kumar Nirbhay13ORCID

Affiliation:

1. Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA

2. Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - Fiocruz Rondônia, Porto Velho, Rondônia, Brazil

3. Department of Global Health, George Washington University, Washington, DC, USA

4. Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil

5. Yale School of Medicine, New Haven, Connecticut, USA

Abstract

ABSTRACT Gamete surface protein P48/45 has been shown to be important for male gamete fertility and a strong candidate for the development of a malaria transmission-blocking vaccine (TBV). However, TBV development for Plasmodium vivax homolog Pvs48/45 has been slow because of a number of challenges: availability of conformationally suitable recombinant protein; the lack of an in vivo challenge model; and the inability to produce P. vivax gametocytes in culture to test transmission-blocking activity of antibodies. To support ongoing efforts to develop Pvs48/45 as a potential vaccine candidate, we initiated efforts to develop much needed reagents to move the field forward. We generated monoclonal antibodies (mAbs) directed against Pvs48/45 and characterized putative functional domains in Pvs48/45 using recombinant fragments corresponding to domains D1–D3 and their biological functionality through ex vivo direct membrane feeding assays (DMFAs) using P. vivax parasites from patients in a field setting in Brazil. While some mAbs partially blocked oocyst development in the DMFA, one mAb caused a significant enhancement of the infectivity of gametocytes in the mosquitoes. Individual mAbs exhibiting blocking and enhancing activities recognized non-overlapping epitopes in Pvs48/45. Further characterization of precise epitopes recognized by transmission-reducing and -enhancing antibodies will be crucial to design an effective immunogen with optimum transmission-reducing potential.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3