Substrate Specificity for Bacterial RNases HII and HIII Is Influenced by Metal Availability

Author:

Randall Justin R.1,Hirst William G.1,Simmons Lyle A.1

Affiliation:

1. Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA

Abstract

ABSTRACT We tested the activities of four predicated RNase H enzymes, including two RNase HI-type enzymes, in addition to RNase HII (RnhB) and RNase HIII (RnhC), on several RNA-DNA hybrid substrates with different divalent metal cations. We found that the two RNase HI-type enzymes, YpdQ and YpeP, failed to show activity on the three substrates tested. RNase HII and RNase HIII cleaved all the substrates tested, although the activity was dependent on the metal made available. We show that Bacillus subtilis RNase HII and RNase HIII are both able to incise 5′ to a single ribonucleoside monophosphate (rNMP). We show that RNase HIII incision at a single rNMP occurs most efficiently with Mn 2+ , an activity we found to be conserved among other Gram-positive RNase HIII enzymes. Characterization of RNases HII and HIII with metal concentrations in the physiological range showed that RNase HII can cleave at single rNMPs embedded in DNA while RNase HIII is far less effective. Further, using metal concentrations within the physiological range, RNase HIII efficiently cleaved longer RNA-DNA hybrids lacking an RNA-DNA junction, while RNase HII was much less effective. Phenotypic analysis showed that cells with an rnhC deletion were sensitive to hydroxyurea (HU). In contrast, cells with an rnhB deletion showed wild-type growth in the presence of HU, supporting the hypothesis that RNases HII and HIII have distinct substrate specificities in vivo . This work demonstrates how metal availability influences the substrate recognition and activity of RNases HII and HIII, providing insight into their functions in vivo . IMPORTANCE RNase H represents a class of proteins that cleave RNA-DNA hybrids, helping resolve R-loops and Okazaki fragments, as well as initiating the process of ribonucleotide excision repair (RER). We investigated the activities of four Bacillus subtilis RNase H enzymes and found that only RNases HII and HIII have activity and that their substrate preference is dependent on metal availability. To understand the factors that contribute to RNase HII and RNase HIII substrate preference, we show that in the presence of metal concentrations within the physiological range, RNases HII and HIII have distinct activities on different RNA-DNA hybrids. This work provides insight into how RNases HII and HIII repair the broad range of RNA-DNA hybrids that form in Gram-positive bacteria.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3