Affiliation:
1. The Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
Abstract
ABSTRACT
A phylogenetically conserved response to nutritional abundance is an increase in insulin signaling, which initiates a set of biological responses dependent on the species. Consequences of augmented insulin signaling include developmental progression, cell and organ growth, and the storage of carbohydrates and lipids. Here, we address the evolutionary origins of insulin's positive effects on anabolic lipid metabolism by selectively modulating insulin signaling in the fat body of the fruit fly,
Drosophila melanogaster
. Analogous to the actions of insulin in higher vertebrates, those in
Drosophila
include expansion of the insect fat cell mass both by increasing the adipocyte number and by promoting lipid accumulation. The ability of insulin to accomplish the former depends on its capacity to bring about phosphorylation and inhibition of the transcription factor
Drosophila
FOXO (dFOXO) and the serine/threonine protein kinase shaggy, the fly ortholog of glycogen synthase kinase 3 (GSK3). Increasing the amount of triglyceride per cell also depends on the phosphorylation of shaggy but is independent of dFOXO. Thus, the findings of this study provide evidence that the control of fat mass by insulin is a conserved process and place dFOXO and shaggy/GSK3 downstream of the insulin receptor in controlling adipocyte cell number and triglyceride storage, respectively.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
149 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献