Enoxacin shows a broad-spectrum antiviral activity against diverse viruses by enhancing antiviral RNAi in insects

Author:

Lyu Bao12,Wang Chang12,Bie Yuanyuan12,Kong Jing12,Wang An12,Jin Liang3,Qiu Yang12,Zhou Xi123ORCID

Affiliation:

1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330029, China

Abstract

RNA interference (RNAi) functions as the major host antiviral defense in insects, while less is understood about how to utilize antiviral RNAi in controlling viral infection in insects. Enoxacin belongs to the family of synthetic antibacterial compounds based on a fluoroquinolone skeleton that has been previously found to enhance RNAi in mammalian cells. In this study, we showed that enoxacin efficiently inhibited viral replication of Drosophila C virus (DCV) and Cricket paralysis virus (CrPV) in cultured Drosophila cells. Enoxacin promoted the loading of Dicer-2-processed virus-derived siRNA into the RNA-induced silencing complex, thereby enhancing antiviral RNAi response in infected cells. Moreover, enoxacin treatment elicited an RNAi-dependent in vivo protective efficacy against DCV or CrPV challenge in adult fruit flies. In addition, enoxacin also inhibited replication of flaviviruses, including Dengue virus and Zika virus, in Aedes mosquito cells in an RNAi-dependent manner. Together, our findings demonstrated that enoxacin can enhance RNAi in insects, and enhancing RNAi by enoxacin is an effective antiviral strategy against diverse viruses in insects, which may be exploited as a broad-spectrum antiviral agent to control vector transmission of arboviruses or viral diseases in insect farming. Importance RNAi has been widely recognized as one of the most broadly acting and robust antiviral mechanism in insects. However, the application of antiviral RNAi in controlling viral infections in insects is less understood. Enoxacin is a fluoroquinolone compound that has been previously found to enhance RNAi in mammalian cells, while its RNAi-enhancing activity has not been assessed in insects. Herein, we showed that enoxacin treatment inhibited viral replication of DCV and CrPV in Drosophila cells and in adult fruit flies. Enoxacin promoted the loading of Dicer-generated virus-derived siRNA into Ago2-incorporated RNA-induced silencing complex, and in turn strengthened the antiviral RNAi response in the infected cells. Moreover, enoxacin also displayed effective RNAi-dependent antiviral effects against flaviviruses, such as Dengue virus and Zika virus, in mosquito cells. This study is the first to demonstrate that enhancing RNAi by enoxacin elicits potent antiviral efficacies against diverse viruses in insects.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3