Affiliation:
1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330029, China
Abstract
RNA interference (RNAi) functions as the major host antiviral defense in insects, while less is understood about how to utilize antiviral RNAi in controlling viral infection in insects. Enoxacin belongs to the family of synthetic antibacterial compounds based on a fluoroquinolone skeleton that has been previously found to enhance RNAi in mammalian cells. In this study, we showed that enoxacin efficiently inhibited viral replication of
Drosophila
C virus (DCV) and Cricket paralysis virus (CrPV) in cultured
Drosophila
cells. Enoxacin promoted the loading of Dicer-2-processed virus-derived siRNA into the RNA-induced silencing complex, thereby enhancing antiviral RNAi response in infected cells. Moreover, enoxacin treatment elicited an RNAi-dependent
in vivo
protective efficacy against DCV or CrPV challenge in adult fruit flies. In addition, enoxacin also inhibited replication of flaviviruses, including Dengue virus and Zika virus, in
Aedes
mosquito cells in an RNAi-dependent manner. Together, our findings demonstrated that enoxacin can enhance RNAi in insects, and enhancing RNAi by enoxacin is an effective antiviral strategy against diverse viruses in insects, which may be exploited as a broad-spectrum antiviral agent to control vector transmission of arboviruses or viral diseases in insect farming.
Importance
RNAi has been widely recognized as one of the most broadly acting and robust antiviral mechanism in insects. However, the application of antiviral RNAi in controlling viral infections in insects is less understood. Enoxacin is a fluoroquinolone compound that has been previously found to enhance RNAi in mammalian cells, while its RNAi-enhancing activity has not been assessed in insects. Herein, we showed that enoxacin treatment inhibited viral replication of DCV and CrPV in
Drosophila
cells and in adult fruit flies. Enoxacin promoted the loading of Dicer-generated virus-derived siRNA into Ago2-incorporated RNA-induced silencing complex, and in turn strengthened the antiviral RNAi response in the infected cells. Moreover, enoxacin also displayed effective RNAi-dependent antiviral effects against flaviviruses, such as Dengue virus and Zika virus, in mosquito cells. This study is the first to demonstrate that enhancing RNAi by enoxacin elicits potent antiviral efficacies against diverse viruses in insects.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献