Molecular Surveillance and Population Structure Analysis of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus in High-Risk Wards

Author:

Sergi Simona1,Donnarumma Francesca1,Mastromei Giorgio1,Goti Emanuele1,Nicoletti Pierluigi2,Pecile Patrizia2,Cecconi Daniela2,Mannino Roberta2,Fanci Rosa3,Bosi Alberto3,Bartolozzi Benedetta3,Casalone Enrico1

Affiliation:

1. CIBIACI and Department of Evolutionary Biology, University of Florence

2. Laboratory of Microbiology, Careggi Hospital

3. Stem Cell Transplantation Unit, Department of Haematology, Careggi Hospital, University of Florence, Florence, Italy

Abstract

ABSTRACT In this study we report the results of analysis of 253 isolates of Staphylococcus aureus (132 methicillin [meticillin]-resistant S. aureus [MRSA] isolates and 121 methicillin-susceptible S. aureus [MSSA] isolates) from 209 patients admitted to 18 high-risk wards of six hospitals located in Florence, Italy, over an 8-month period during which a program of epidemiological surveillance of hospital-acquired infections was conducted. The majority (69%) of the 87 reported S. aureus infections were caused by MRSA. No outbreak events have been reported. All the isolates were typed by amplified fragment length polymorphism (AFLP), and AFLP profiles were analyzed in order to define similarity groups. The discriminatory power of AFLP is very high with MSSA (Simpson index of diversity [ D ], 95.9%), whereas its resolution capability with MRSA ( D , 44.7%) is hampered by the well-known high clonality of these populations (the main MRSA group accounted for 74% of the MRSA isolates). Combining AFLP, improved by visual inspection of polymorphisms, with multiplex PCR greatly increases MRSA resolution ( D , 85.5%), resolving the MRSA population to a level that is one of the highest reported in the literature. Widespread and sporadic clones of MSSA and MRSA were identified, and their diffusion in the different hospitals and wards over the surveillance period was studied. The understanding of MSSA and MRSA population structures should be the starting point for the design of a more rational surveillance program for S. aureus species, maximizing benefits and reducing the cost of infection control strategies.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3