Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus cells studied by substrate-enhanced tetrazolium reduction and digital image processing

Author:

Gribbon L T1,Barer M R1

Affiliation:

1. Department of Microbiology, Medical School, University of Newcastle upon Tyne, United Kingdom.

Abstract

Growing and nonculturable cells of Helicobacter pylori and Vibrio vulnificus were studied for the capacity to reduce tetrazolium salts in order to elucidate the possible physiological basis for the proposed "viable but nonculturable" (VNC) state. Initial difficulties in obtaining consistent reduction of rho-iodonitrotetrazolium violet (INT) by H. pylori led us to develop a method for studying the effect of adding exogenous substrates on these reactions. The established procedure provided a profile of substrate enhancement of oxidative activity revealed by INT reduction which was related to both the identity and physiological state of the organism studied. Representation and interpretation of these enhancement profiles were facilitated by digital image processing. Nonculturable cells of H. pylori produced by carbon and nitrogen starvation in air lost all INT-reducing capacity in 24 h when stored at 37 degrees C, while 99% of those produced at 4 degrees C retained oxidative activity for at least 250 days when tested in the presence but not in the absence of succinate, alpha-ketoglutarate, or aspartate. Activity was detected at similar levels in cells with coccoid and spiral shapes. In contrast, only 1% of nonculturable cells of V. vulnificus, produced under conditions previously reported to induce the VNC state in this organism, retained intrinsic INT-reducing capacity; no substrate-enhanced activity occurred in the remainder of the population. Thus, there was no common pattern of oxidative activity indicative of a VNC state in both test organisms. Nonculturable cells of H. pylori can retain several different oxidative enzyme activities; whether these indicate viability or the persistence of cells as "bags of enzymes" remains to be established.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3