Affiliation:
1. Department of Microbiology, University of Massachusetts, Amherst 01003.
Abstract
The extreme halophile Halobacterium halobium synthesizes intracellular gas-filled vesicles that confer buoyancy. A cluster of 13 genes on the 200-kb endogenous plasmid pNRC100 has been implicated in the biosynthesis of gas vesicles. Here, we show that two gas vesicle proteins are encoded by genes in the rightward operon, gvpA and gvpC, by Western blotting (immunoblotting) analysis with antibodies directed against LacZ-GvpA and LacZ-GvpC fusion proteins. Our results are consistent with previous data showing that the gvpA gene product is the major gas vesicle protein and demonstrate for the first time that the gvpC gene product is also present in H. halobium gas vesicles. Northern (RNA) blotting analysis showed two RNA species, an abundant 0.35-kb transcript of gvpA and a minor 2.5-kb transcript of gvpAC, and a third gene 3' to gvpAC, named gvpN. The gvpN gene encodes a hypothetical acidic protein with a molecular weight of 39,000 and a nucleotide binding motif. We used a site-directed mutagenesis method involving double recombination in Escherichia coli to insert a kanamycin resistance cassette just beyond the stop codon of gvpN. Introduction of the mutated gene cluster into an H. halobium mutant with a deletion of the entire gas vesicle gene cluster resulted in gas vesicle-positive transformants; this result suggests that gvpN is the last gene of the rightward gas vesicle transcription unit. We discuss the design and utility of the kanamycin resistance cassette for the mutagenesis of other genes in large operons.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献