Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli

Author:

Leonardo M R1,Cunningham P R1,Clark D P1

Affiliation:

1. Department of Microbiology, Southern Illinois University, Carbondale, 62901.

Abstract

The regulation of the adhE gene, which encodes the trifunctional fermentative acetaldehyde-alcohol dehydrogenase of Escherichia coli, was investigated by the construction of gene fusions and by two-dimensional protein gel electrophoresis. Both operon and protein fusions of adhE to lacZ were induced 10- to 20-fold by anaerobic conditions, and both fusions were repressed by nitrate, demonstrating that regulation is at the level of transcription. Nitrate repression of phi (adhE-lacZ) expression, as well as of alcohol dehydrogenase enzyme activity, was partly relieved by a mutation in narL. Mutations in rpoN or fnr had no effect on the expression of adhE. Two-dimensional protein gels demonstrated that increases in the amount of adhE protein correlated with increases in enzyme activity, demonstrating that induction was due to synthesis of new protein, not to activation of preexisting protein. When oxidized sugar derivatives such as gluconate or glucuronate were used as carbon sources, the anaerobic expression of phi (adhE-lacZ) was greatly reduced, whereas when sugar alcohols such as sorbitol were used, the expression was increased compared with expression when glucose was the carbon source. This observation suggested that induction of phi (adhE-lacZ) might depend on the level of reduced NADH, which should be highest with sorbitol-grown cells and lowest with glucuronate-grown cells. When phi (adhE-lacZ) was present in a strain deleted for the adhE structural gene, anaerobic expression of phi (adhE-lacZ) was approximately 10-fold higher than in an adhE+ strain. Since the presence of alcohol dehydrogenase would serve to decrease NADH levels, this finding again implies that the adhE gene is regulated by the concentration of reduced NAD. Introduction of a pgi (phosphoglucose isomerase) mutation reduced the anaerobic induction of phi(adhE-lacZ) when the cells were grown on glucose, but had little effect on fructose-grown cells. Pyruvate did not overcome the pgi effect, but glycerol 3-phosphate did, which is again consistent with the possibility that adhE expression responds to the level of reduced NAD rather than to a glycolytic intermediate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3