Affiliation:
1. Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan 48201.
Abstract
The Shiga toxin operon (stx) is composed of two genes for the A and B subunits, which are transcribed from a promoter 5' to the stxA gene. The 1A:5B subunit stoichiometry of the holotoxin suggests that the stxA and stxB genes are differentially regulated. In a previous study, we demonstrated the existence of a second promoter which independently transcribes the stxB gene. However, transcription fusion analysis revealed that the independent stxB gene promoter is not solely responsible for a fivefold increase in B polypeptide production. In this study, we have investigated the role of an independent stxB gene ribosome-binding site (RBS) in the overexpression of STX B subunits. Site-directed mutagenesis was used to eliminate this RBS and establish its role in StxB production. Examination of the nucleotide sequences surrounding the stxB gene RBS revealed a potential for the formation of a stem-loop structure with a calculated delta G of -7.563 kcal/mol (ca. -31.64 kJ/mol). Sequences surrounding the stxA gene RBS were found not to possess a similar potential for secondary-structure formation. Disruption of the stem-loop surrounding the stxB gene RBS by 2- and 4-nucleotide substitutions caused a significant reduction in B polypeptide and holotoxin production, establishing the role of this secondary structure in the enhancement of translation of the stxB gene.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献