CTP Limitation Increases Expression of CTP Synthase in Lactococcus lactis

Author:

Jørgensen Casper Møller1,Hammer Karin1,Martinussen Jan1

Affiliation:

1. Bacterial Physiology and Genetics, BioCentrum-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

ABSTRACT CTP synthase is encoded by the pyrG gene and catalyzes the conversion of UTP to CTP. A Lactococcus lactis pyrG mutant with a cytidine requirement was constructed, in which β-galactosidase activity in a pyrG - lacLM transcriptional fusion was used to monitor gene expression of pyrG . A 10-fold decrease in the CTP pool induced by cytidine limitation was found to immediately increase expression of the L. lactis pyrG gene. The final level of expression of pyrG is 37-fold higher than the uninduced level. CTP limitation has pronounced effects on central cellular metabolism, and both RNA and protein syntheses are inhibited. Expression of pyrG responds only to the cellular level of CTP, since expression of pyrG has no correlation to alterations in UTP, GTP, and ATP pool sizes. In the untranslated pyrG leader sequence a potential terminator structure can be identified, and this structure is required for regulation of the pyrG gene. It is possible to fold the pyrG leader in an alternative structure that would prevent the formation of the terminator. We suggest a model for pyrG regulation in L. lactis , and probably in other gram-positive bacteria as well, in which pyrG expression is directly dependent on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing an antiterminator to form and transcription to proceed. This model therefore does not include any trans- acting protein for sensing the CTP concentration as previously proposed for Bacillus subtilis .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3