Molecular Characterization of the Mg 2+ -Responsive PhoP-PhoQ Regulon in Salmonella enterica

Author:

Lejona Sergio1,Aguirre Andrés1,Cabeza María Laura1,Véscovi Eleonora García1,Soncini Fernando C.1

Affiliation:

1. Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, S2002LRK-Rosario, Argentina

Abstract

ABSTRACT The PhoP/PhoQ two-component system controls the extracellular magnesium deprivation response in Salmonella enterica . In addition, several virulence-associated genes that are mainly required for intramacrophage survival during the infection process are under the control of its transcriptional regulation. Despite shared Mg 2+ modulation of the expression of the PhoP-activated genes, no consensus sequence common to all of them could be detected in their promoter regions. We have investigated the transcriptional regulation and the interaction of the response regulator PhoP with the promoter regions of the PhoP-activated loci phoPQ , mgtA , slyB , pmrD , pcgL , phoN , pagC , and mgtCB . A direct repeat of the heptanucleotide sequence (G/T)GTTTA(A/T) was identified as the conserved motif recognized by PhoP to directly control the gene expression of the first five loci, among which the first four are ancestral to enterobacteria. On the other hand, no direct interaction of the response regulator with the promoter of phoN , pagC , or mgtCB was apparent by either in vitro or in vivo assays. These loci are Salmonella specific and were probably acquired by horizontal DNA transfer. Besides, sequence analysis of pag promoters revealed the presence of a conserved PhoP box in 6 out of the 12 genes analyzed. Our results strongly suggest that the expression of a set of Mg 2+ -controlled genes is driven by PhoP via unknown intermediate regulatory mechanisms that could also involve ancillary factors.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3