Salmonella acid shock proteins are required for the adaptive acid tolerance response

Author:

Foster J W1

Affiliation:

1. Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688.

Abstract

Salmonella typhimurium, as well as other enteric bacteria, experiences significant fluctuations in H+ ion concentrations during growth in diverse ecological niches. In fact, some pH conditions which should kill cells rapidly, such as stomach acidity, are nevertheless tolerated. The complete mechanism for this tolerance is unknown. However, I have recently demonstrated that S. typhimurium has the ability to survive extreme low pH (pH 3.0 to 4.0) if first adapted to mild pH (pH 5.5 to 6.0). This phenomenon has been referred to as the acidification tolerance response (ATR). The exposure to mild acid is referred to as preshock, and the proteins involved are called preshock ATR proteins. A second type of encounter with acid, called acid shock, involves shifting cells directly from alkaline conditions (pH 7.7) to acid conditions (pH 4.5 or below). During acid shock, the organism immediately ceases reproduction and dramatically changes the expression of at least 52 proteins. All but four are distinct from the preshock ATR proteins. Surprisingly, acid shock alone did not afford significant protection against strong acid challenge in minimal medium. Furthermore, inhibiting protein synthesis prior to acid shock revealed that the acid shock proteins do not appear to contribute to acid survival in minimal medium even at pH 4.3. Constitutive cellular pH homeostatic mechanisms seem sufficient to protect cells at this pH. The data suggest that the induction of acid shock and preshock ATR proteins are separate processes requiring separate signals. However, for S. typhimurium to survive extreme acid conditions, it must induce both the preshock and acid shock systems. Preventing the expression of one or the other eliminates acid tolerance. I propose a two-stage process that allows S. typhimurium to phase in acid tolerance as the environmental pH becomes progressively more acidic.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference23 articles.

1. Novel regulatory loci controlling oxygen- and pH-regulated gene expression in Salmonella typhimurium;Aliabadi Z.;J. Bacteriol.,1988

2. Construction of lac fusions to the inducible arginine and Iysine decarboxylase genes of Escherichia coli K-12;Auger E. A.;Mol. Microbiol.,1989

3. Regulation of cytoplasmic pH in bacteria;Booth I. R.;Microbiol. Rev.,1985

4. Induction of Salmonella stress proteins upon infection of macrophages;Buchmeier N. A.;Science,1990

5. Davis R. W. D. Botstein and J. R. Roth (ed.). 1980. Advanced bacterial genetics. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.

Cited by 261 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3