Analysis of the upstream activating sequence and site of carbon and nitrogen source repression in the promoter of an early-induced sporulation gene of Bacillus subtilis

Author:

Frisby D1,Zuber P1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130.

Abstract

The transcription from the spoVG promoter of Bacillus subtilis is induced at the start of the stationary phase of growth and is dependent on the expression of the spoOA, spoOB, and spoOH genes. It is repressed in cells grown in the presence of excess glucose and glutamine and is under the negative control of the abrB gene. The spoOA and spoOB gene products function to suppress the negative control exerted by abrB. Transcription initiation requires the form of RNA polymerase holoenzyme that contains the spoOH gene product, sigma H. Optimal transcription also requires an upstream A-T-rich region termed the upstream activating sequence (UAS). The mechanism of UAS function was examined through mutational analysis of the spoVG promoter region. Deletion of the UAS or positioning the UAS one half turn or one full turn of the DNA helix upstream of its location in wild-type spoVG resulted in a severe reduction in promoter activity. Deletion of most of the UAS abolished the abrB-dependent repression of spoVG transcription. Higher activity was observed when the UAS was inserted 10 bp (one turn of the helix) upstream than when the sequence was repositioned either 5 or 13 bp upstream. Sequences upstream of the UAS were found not to be involved with the position-dependent function of the UAS. Positioning the UAS 42 or 116 bp upstream eliminated the stimulatory effect of the sequence on spoVG transcription. These data indicate that the UAS functions effectively when it is in close proximity to the -35 region. In vitro transcription analysis indicated that the deletion and insertion mutation affecting the UAS impair RNA polymerase-spoVG promoter interaction. Deletion of the UAS showed that the negative effect of exogenous glucose and glutamine is not dependent on the UAS but is exerted at a site within or near the -35 and -10 regions.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3