Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120

Author:

Brahamsha B1,Haselkorn R1

Affiliation:

1. Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637.

Abstract

The filamentous cyanobacterium Anabaena sp. strain PCC 7120 responds to combined nitrogen deprivation by forming specialized nitrogen-fixing cells at regular intervals along the filament. Genetic and biochemical studies have indicated that regulation of gene expression during differentiation occurs at the transcriptional level. As part of a characterization of RNA polymerase during differentiation, the gene encoding the 52-kDa principal sigma factor of the Anabaena sp. strain PCC 7120 vegetative-cell RNA polymerase was isolated by using an oligonucleotide probe based on the sequence of the N-terminal seven amino acids of the purified protein. sigA codes for a 390-amino-acid polypeptide that has a predicted molecular weight of 45,641. The amino acid sequence of the polypeptide encoded by sigA contains four regions corresponding to conserved domains of the principal RNA polymerase sigma factors of Escherichia coli (sigma 70) and Bacillus subtilis (sigma 43). Thus, although the subunit composition of cyanobacterial RNA polymerase core differs from that of other eubacteria (G. J. Schneider and R. Haselkorn, J. Bacteriol. 170:4136-4140, 1988), the principal sigma factor of at least one cyanobacterium is typically eubacterial. In contrast to sigma 70 and sigma 43 operon organization, sigA is monocistronic and encodes two transcripts of 1.7 and 2.2 kb. The abundance of the 1.7-kb transcript remains constant under both nitrogen-replete and nitrogen-limiting conditions, whereas the 2.2-kb transcript is induced following the removal of combined nitrogen. Continued or enhanced transcription of sigA under nitrogen starvation conditions is consistent with the observation that the principal RNA polymerase in differentiating cells contains SigA.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-omics techniques for the genetic and epigenetic analysis of rare diseases;Journal of Genetic Medicine;2023-06-30

2. Heterologous production of cyanobacterial compounds;Journal of Industrial Microbiology and Biotechnology;2021-01-25

3. Cyanobacterial sigma factors: Current and future applications for biotechnological advances;Biotechnology Advances;2020-05

4. Transcriptional regulation of development in heterocyst-forming cyanobacteria;Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms;2019-07

5. Regulatory Tools for Controlling Gene Expression in Cyanobacteria;Synthetic Biology of Cyanobacteria;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3