Purification and properties of an intracellular calmodulinlike protein from Bacillus subtilis cells

Author:

Fry I J1,Becker-Hapak M1,Hageman J H1

Affiliation:

1. Department of Chemistry, New Mexico State University, Las Cruces 88003.

Abstract

Although calcium ions are crucial in a variety of bacterial processes, including spore development, reports of calmodulin in procaryotes have been few. We have purified to homogeneity a calmodulinlike protein (CaLP) from sporulating cells of Bacillus subtilis grown in a chemically defined sporulation medium; purification involved heat treatment, fractionation with ammonium sulfate, affinity chromatography, and gel filtration on high-performance columns. The protein was eluted from a phenothiazine affinity column in a calcium ion-dependent manner, stained poorly with Coomassie blue and silver stain dyes, bound poorly to nitrocellulose filters, and was not an inhibitor of the major intracellular serine proteinase. It stimulated bovine brain phosphodiesterase in a dose- and Ca2(+)-dependent manner and stimulated NAD kinase from peas in a dose-dependent manner. The B. subtilis calmodulin reacted with anti-bovine brain calmodulin antibodies in enzyme-linked immunoabsorbance assays. The amino acid composition data showed it to be distinctly different from eucaryotic calmodulins, having particularly high levels of serine and glycine. The pI of the protein was estimated to be 4.9 to 5.0. The molecular weight was estimated to be 23,000 or 25,000, based on amino acid composition and detergent gel electrophoresis, respectively. The protein reacted with rhodamine isothiocyanate, which blocked its enzyme-activating capacity and greatly increased its electrophoretic mobility and Coomassie dye-binding ability.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3